Responses of Growth and Grain Yield of IR50404 Rice to Temperature Stress
Abstract
Full Text:
PDFReferences
Arshad, M. S., Farooq, M., Asch, F., Krishna, J. S. V.,
Prasad, P. V. V., & Siddique, K. H. M. (2017).
Thermal stress impacts reproductive development
and grain yield in rice. Plant Physiology and
Biochemistry, 115, 57-72.
Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P. C., . . .
Xiong, Y. (2016). Responses of wheat and rice to
factorial combinations of ambient and elevated
CO2 and temperature in FACE experiments. Global
change biology, 22(2), 856-874.
Cai, C., Yin, X., He, S., Jiang, W., Si, C., Struik, P. C., . . .
Pan, G. (2016). Responses of wheat and rice to
factorial combinations of ambient and elevated
CO2 and temperature in FACE experiments. Glob
Chang Biol, 22(2), 856-874.
doi:10.1111/gcb.13065
Chaturvedi, A. K., Bahuguna, R. N., Pal, M., Shah, D.,
Maurya, S., & Jagadish, K. S. V. (2017). Elevated
CO2 and heat stress interactions affect grain yield,
quality, and mineral nutrient composition in rice
under field conditions. Field Crops Research, 206,
-157.
doi:https://doi.org/10.1016/j.fcr.2017.02.018
Chaturvedi, A. K., Bahuguna, R. N., Shah, D., Pal, M., &
Jagadish, S. V. (2017). High temperature stress
during flowering and grain filling offsets beneficial
impact of elevated CO2 on assimilate partitioning
and sink-strength in rice. Scientific Reports, 7(1), 1-
Chen, K.-J., Tang, J.-C., Xu, B.-H., Lan, S.-L., & Cao, Y.
(2019). Degradation enhancement of rice straw by
co-culture of Phanerochaete chrysosporium and
Trichoderma viride. Scientific Reports, 9(1), 1-7.
Cheng, W., Sakai, H., Yagi, K., & Hasegawa, T. (2009).
Interactions of elevated [CO2] and night
temperature on rice growth and yield. Agricultural
and Forest Meteorology, 149(1), 51-58.
doi:10.1016/j.agrformet.2008.07.006
Fahad, S., Adnan, M., Hassan, S., Saud, S., Hussain, S.,
Wu, C., . . . Turan, V. (2019). Rice responses and
tolerance to high temperature. In Advances in rice
research for abiotic stress tolerance (pp. 201-224):
Elsevier.
Hasegawa, T., Sakai, H., Tokida, T., Nakamura, H., Zhu,
C., Usui, Y., . . . Katayanagi, N. (2013). Rice
cultivar responses to elevated CO2 at two free-air
CO2 enrichment (FACE) sites in Japan. Functional
Plant Biology, 40(2), 148-159.
Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N.,
Baasansuren, J., Fukuda, M., & Troxler, T. J. I.,
Switzerland. (2014). 2013 supplement to the 2006
IPCC guidelines for national greenhouse gas
inventories: Wetlands.
Hoffman, A. L., Kemanian, A. R., & Forest, C. E. (2018).
Analysis of climate signals in the crop yield record
of sub‐Saharan Africa. Global change biology,
(1), 143-157.
Hoque, T. S., Sohag, A. A. M., Kordrostami, M., Hossain,
M., Islam, M., Burritt, D. J., & Hossain, M. A.
(2020). The Effect of Exposure to a Combination of
Stressors on Rice Productivity and Grain Yields. In
Rice Research for Quality Improvement: Genomics
and Genetic Engineering (pp. 675-727): Springer.
IRRI. (2002). Standard evaluation system for rice.
International Rice Research Institute, Philippine.
Jing, L., Wang, J., Shen, S., Wang, Y., Zhu, J., Wang, Y.,
. . . Agriculture. (2016). The impact of elevated
CO2 and temperature on grain quality of rice grown
under open‐air field conditions. 96(11), 3658-3667.
JT, B., & LH Jr, A. (1993). Effects of CO2 and
Temperature on Rice A Summary of Five Growing
Seasons. Journal of Agricultural Meteorology,
(5), 575-582.
Kadam, N. N., Xiao, G., Melgar, R. J., Bahuguna, R. N.,
Quinones, C., Tamilselvan, A., . . . Jagadish, K. S.
J. A. i. a. (2014). Agronomic and physiological
responses to high temperature, drought, and
elevated CO2 interactions in cereals. 127, 111-156.
Kim, H., & You, Y. J. A. i. B. R. (2010). The effects of the
elevated CO2 concentration and increased
temperature on growth, yield and physiological
responses of rice (Oryza sativa L. cv. Junam). 1(2),
-50.
Kim, H. Y., Lieffering, M., Kobayashi, K., Okada, M., &
Miura, S. H. U. (2003). Seasonal changes in the
effects of elevated CO2 on rice at three levels of
nitrogen supply: a free air CO2 enrichment (FACE)
experiment. Global change biology, 9(6), 826-837.
Kimball, B. A. (2016). Crop responses to elevated CO2 and
interactions with H2O, N, and temperature. Curr
Opin Plant Biol, 31, 36-43.
doi:10.1016/j.pbi.2016.03.006
Krishnan, P., Ramakrishnan, B., Reddy, K. R., & Reddy,
V. R. (2011). Chapter three - High-Temperature
Effects on Rice Growth, Yield, and Grain Quality.
In D. L. Sparks (Ed.), Advances in agronomy (Vol.
, pp. 87-206): Academic Press.
Krishnan, P., Swain, D. K., Bhaskar, B. C., Nayak, S. K.,
& Dash, R. N. (2007). Impact of elevated CO2 and
temperature on rice yield and methods of adaptation
as evaluated by crop simulation studies.
Agriculture, Ecosystems & Environment, 122(2),
-242.
Khoi, D. N., & Phi, H. L. J. L. H. B. (2018). Impact of
climate change on streamflow and water quality in
the upper Dong Nai river basin, Vietnam. (1), 70-
Khoshnevisan, B., Shariati, H. M., Rafiee, S., &
Mousazadeh, H. (2014). Comparison of energy
consumption and GHG emissions of open field and
greenhouse strawberry production. Renewable and
Sustainable Energy Reviews, 29, 316-324.
Madan, P., Jagadish, S., Craufurd, P., Fitzgerald, M.,
Lafarge, T., & Wheeler, T. J. J. o. e. b. (2012).
Effect of elevated CO2 and high temperature on
seed-set and grain quality of rice. 63(10), 3843-
Madan, P., Jagadish, S. V., Craufurd, P. Q., Fitzgerald, M.,
Lafarge, T., & Wheeler, T. R. (2012). Effect of
elevated CO2 and high temperature on seed-set and
grain quality of rice. J Exp Bot, 63(10), 3843-3852.
doi:10.1093/jxb/ers077
Mahmood, A., Wang, W., Ali, I., Zhen, F., Osman, R., Liu,
B., . . . Tang, L. (2021). Individual and Combined
Effects of Booting and Flowering HighTemperature Stress on Rice Biomass
Accumulation. Plants, 10(5), 1021.
Moldenhauer, K., & Slaton, N. (2001). Rice growth and
development. Rice production handbook, 192, 7-
Morita, S., Wada, H., & Matsue, Y. (2016).
Countermeasures for heat damage in rice grain
quality under climate change. Plant production
science, 19(1), 1-11.
Ngo-Duc, T., Kieu, C., Thatcher, M., Nguyen-Le, D., &
Phan-Van, T. J. C. R. (2014). Climate projections
for Vietnam based on regional climate models.
(3), 199-213.
Salvucci, M. E., & Crafts‐Brandner, S. J. (2004). Inhibition
of photosynthesis by heat stress: the activation state
of Rubisco as a limiting factor in photosynthesis.
Physiologia plantarum, 120(2), 179-186.
Saseendran, S. A., Singh, K. K., Rathore, L. S., Singh, S.
V., & Sinha, S. K. (2000). Effects of climate change
on rice production in the tropical humid climate of
Kerala, India. Climatic Change, 44(4), 495-514.
Singh, R. P., Prasad, P. V. V., & Reddy, K. R. (2013).
Impacts of changing climate and climate variability
on seed production and seed industry. Advances in
agronomy, 118, 49-110.
Thuc, T., Van Thang, N., Huong, H. T. L., Van Khiem, M.,
Hien, N. X., Phong, D. H. J. M. o. N. r., &
Environment. Hanoi, V. (2016). Climate change
and sea level rise scenarios for Vietnam.
Usui, Y., Sakai, H., Tokida, T., Nakamura, H., Nakagawa,
H., & Hasegawa, T. (2016). Rice grain yield and
quality responses to free‐air CO2 enrichment
combined with soil and water warming. Global
change biology, 22(3), 1256-1270.
Vien, T. D. (2011). Climate change and its impact on
agriculture in Vietnam. Journal of the International
Society for Southeast Asian Agricultural Sciences,
(1), 17-21.
Wang, W., Cai, C., Lam, S. K., Liu, G., & Zhu, J. (2018).
Elevated CO2 cannot compensate for japonica grain
yield losses under increasing air temperature
because of the decrease in spikelet density.
European Journal of Agronomy, 99, 21-29.
Xiong, D., Ling, X., Huang, J., & Peng, S. (2017). Metaanalysis and dose-response analysis of high
temperature effects on rice yield and quality.
Environmental and Experimental Botany, 141, 1-9.
Xu, J., Henry, A., & Sreenivasulu, N. (2020). Rice yield
formation under high day and night temperatures—
A prerequisite to ensure future food security. Plant,
Cell & Environment, 43(7), 1595-1608.
Zakaria, S., Matsuda, T., Tajima, S., & Nitta, Y. (2002).
Effect of high temperature at ripening stage on the
reserve accumulation in seed in some rice cultivars.
Plant production science, 5(2), 160-168.
Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D. B., Huang,
Y., . . . Ciais, P. (2017). Temperature increase
reduces global yields of major crops in four
independent estimates. Proceedings of the National
Academy of Sciences, 114(35), 9326-9331.
Refbacks
- There are currently no refbacks.