Nanoemulsion from Piper aduncum, Cymbopogon nardus, and Bacillus thuringiensis to Control Xanthomonas axonopodis pv. allii

Ly Lan Phuong, Eka Candra Lina, Yulmira Yanti

Abstract

The bacterial species Xanthomonas axonopodis pv allii (Xaa) is an important pathogen causing leaf blight in shallots. The use of botanical pesticides with nanoemulsion formulations has become a common alternative. This study aims to determine the characteristics and optimum concentration of the mixture of essential oil of Piper aduncum and fragrant Cymbopogon nardus waste. Nanoemulsion formulations are made using spontaneous emulsification methods. Besides, testing Bacillus thuringiensis strain MRSNR3.1 and its secondary metabolites toxicity against Xaa was carried out by the diffusion method using paper discs to determine the diameter of the inhibition zone. The results demonstrate that all four concentrations, 1%, 2.5%, 5%, and 7.5%, could control Xaa bacteria. A concentration of 1% is considered more optimal than the other three   concentrations in bactericidal effects against Xaa, as manifested in the formed clear zone (diameter of 3.17 cm). Besides, Bacillus thuringiensis strain MRSNR3.1 and its secondary metabolites were also effective against
Xaa after four days of incubation with inhibition zones of 3.04 ± 0.44
and 2.21 ± 0.28, respectively. Hence, it is concluded that nanoemulsion at 1% concentration and Bacillus thuringiensis strain MRSNR3.1 have  bactericidal properties that can be used to control Xaa

Full Text:

PDF

References

Abena, A. A., Gbenou, J. D., Yayi, E., Moudachirou, M., Ongoka, R., Ouamba, J. M., & Silou, T. (2007). Comparative chemical and analgesic properties of

essential oils of Cymbopogon nardus (L) Rendle of Benin and Congo. African Journal of Traditional, Complementary and Alternative Medicines, 4(3), 267-

Alvarez, A. M., Buddenhagen, I. W., Buddenhagen, E. S., & Domen, H. Y. (1978). Bacterial blight of onion, a new disease caused by Xanthomonas sp. Phytopathology, 68(8), 1132-1136.

Arze, J. B. L., Collin, G., Garneau, F. X., Jean, F. I., & Gagnon, H. (2008). Essential oils from Bolivia. VIII. Piperaceae: Piper heterophyllum Ruiz et Pavón, P. aduncum L. Journal of Essential Oil Bearing Plants, 11(1), 53-57.

Benchimol, R. L., Sutton, J. C., Bastos, C. N., & Dias-Filho, M. (2001). Survival of black pepper plants in soil infected with Fusarium solani f. sp. piperis and amended with extracts or residues of Piper aduncum. Can J Plant Pathol, 23, 194.

Brazao, M. A. B., Brazao, F. V., Guilherme, J., & Monteiro, M. C. (2014). Antibacterial activity of the Piper aduncum oil and dillapiole, its main constituent, against

multidrug-resistant strains. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 13(6), 517-526.

Carmo, E. S., Pereira, F. D. O., Moreira, A. C. P., Brito, L. L., Gayoso, C. W., Costa, J. D., & Lima, E. D. O. (2012). Essential oil from Cymbopogon citratus (DC) Stapf: a promising natural product against Malassezia spp. Rev Inst Adolfo Lutz, Rio de Janeiro, 2(71), 386-391.

Cerpa, M. G., Mato, R. B., Cocero, M. J., Ceriani, R., Meirelles,A. J. A., Prado, J. M., ... & Meireles, M. A. A. (2009). Steam distillation applied to the food industry. CRC Press: Boca Raton, FL.

Magalhães, C.F., de Siqueira E.P., de Oliveira, E.A., Zani C.L., Peres R.L., dos Santos K.V. & Andrade A. A. (2016). Antimicrobial activity of Piper aduncum leaf extracts against the dental plaque bacteria Streptococcus mutans and Streptococcus sanguinis. JMPR 10(23), 331-337.

Chisowa, E. H., Hall, D. R., & Farman, D. I. (1998). Volatile constituents of the essential oil of Cymbopogon citratus Stapf grown in Zambia. Flavour and Fragrance Journal, 13(1), 29-30.

Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants–with special reference to induced systemic resistance (ISR). Microbiological Research, 164(5), 493-513.

Conn, K. E., Lutton, J. S., & Rosenberger, S. A. (2012). Onion disease guide: a practical guide for seedsmen, growers and agricultural advisors. Senminis Vegetable Seeds.

Woodland.

Cook, A. A., & Stall, R. E. (1969). Differentiation of pathotypes among isolates of Xanthomonas vesicatoria. Plant disease reporter.

de la Vega, L. M., Barboza-Corona, J. E., Aguilar-Uscanga, M.G., & Ramírez-Lepe, M. (2006). Purification and characterization of an exochitinase from Bacillus

thuringiensis subsp. aizawai and its action against phytopathogenic fungi. Canadian Journal of Microbiology, 52(7).

de Morais, S. M., Facundo, V. A., Bertini, L. M., Cavalcanti, E. S. B., dos Anjos Júnior, J. F., Ferreira, S. A., ... & de Souza Neto, M. A. (2007). Chemical composition and

larvicidal activity of essential oils from Piper species Biochemical Systematics and Ecology, 35(10), 670-675.

Dimkić, I., Janakiev, T., Petrović, M., Degrassi, G., & Fira, D. (2022). Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression

via biological control mechanisms-A review. Physiological and Molecular Plant Pathology, 117, 101754.

Drais, H. K., & Hussein, A. A. (2015). Formulation and characterization of carvedilol nanoemulsion oral liquid dosage form. Int J Pharm Pharm Sci, 7(12), 209-216.

Dubey, N. K., Shukla, R., Kumar, A., Singh, P., & Prakash, B. (2010). Prospects of botanical pesticides in sustainable agriculture. Current Science, 98(4), 479-480.

Erlina, L. H., Lina, E. C., & Djamaan, A. (2020, March). Insecticidal activity of nanoemulsion of Piper aduncum extracts against cabbage head caterpillar

Crocidolomia pavonana F.(Lepidoptera: Crambidae). In IOP Conference Series: Earth and Environmental Science (Vol. 468, No. 1, p. 012001). IOP Publishing.

Ferreira, O. O., Cruz, J. N., de Moraes, Â. A. B., de Jesus Pereira Franco, C., Lima, R. R., Anjos, T. O. D., ... & Andrade, E. H. D. A. (2022). Essential oil of the

plants growing in the Brazilian Amazon: Chemical composition, antioxidants, and biological applications. Molecules, 27(14), 4373.

FroÃ, C., de Siqueira, E. P., de Oliveira, E. A., Zani, C. L., Peres, R. L., ValÃ, K., & AssunÃ, A. (2016). Antimicrobial activity of Piper aduncum leaf extracts

against the dental plaque bacteria Streptococcus mutans and Streptococcus sanguinis. Journal of Medicinal Plants Research, 10(23), 331-337.

Gent, D. H., & Schwartz, H. F. (2005). Management of Xanthomonas leaf blight of onion with a plant activator, biological control agents, and copper

bactericides. Plant disease, 89(6), 631-639.

Hasyim, D. M. (2011). Potensi buah sirih hutan (Piper aduncum) sebagai insektisida botani terhadap larva Crocidolomia pavonana (Doctoral dissertation, Tesis

MSi. Bogor: Institut Pertanian Bogor).

Hyakumachi, M., Nishimura, M., Arakawa, T., Asano, S.,Yoshida, S., Tsushima, S., & Takahashi, H. (2013). Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato. Microbes and Environments, 28(1), 128-134.

Jafari, B., Ebadi, A., Aghdam, B. M., & Hassanzade, Z. (2012). Antibacterial activities of lemon grass methanol extract and essence on pathogenic bacteria. American-

Eurasian J Agric and Environ Sci, 2, 1042-6.

Jung, W. J., Mabood, F., Souleimanov, A., Zhou, X., Jaoua, S.,Kamoun, F., & Smith, D. L. (2008). Stability and antibacterial activity of bacteriocins produced by

Bacillus thuringiensis and Bacillus thuringiensis ssp. kurstaki. Journal of Microbiology and Biotechnology, 18(11), 1836-1840.

Kamal, H. Z. A., Ismail, T. N. N. T., Arief, E. M., & Ponnuraj, K. T. (2020). Antimicrobial activities of citronella (Cymbopogon nardus) essential oil against several

oral pathogens and its volatile compounds. Padjadjaran Journal of Dentistry, 32(1), 1-7.

Kamoun, F., Fguira, I. B., Hassen, N. B. B., Mejdoub, H.,Lereclus, D., & Jaoua, S. (2011). Purification and characterization of a new Bacillus thuringiensis

bacteriocin active against Listeria monocytogenes, Bacillus cereus and Agrobacterium tumefaciens. Applied biochemistry and biotechnology, 165, 300-314.

Kamoun, F., Zouari, N., Saadaoui, I., & Jaoua, S. (2009). Improvement of Bacillus thuringiensis bacteriocin

production through culture conditions optimization. Preparative biochemistry & biotechnology, 39(4),400-412.

Issazadeh, K., Rad, S. K., Zarrabi, S., & Rahimibashar, M. R. (2012). Antagonism of Bacillus species against Xanthomonas campestris pv. campestris and

Pectobacterium carotovorum subsp. carotovorum. African Journal of Microbiology Research, 6(7),1615-1620.

Lengai, G. M., Muthomi, J. W., & Mbega, E. R. (2020). Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop

production. Scientific African, 7, e00239.

Liu, X., Ruan, L., Peng, D., Li, L., Sun, M., & Yu, Z. (2014). Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity

against a wide range of insects. Toxins, 6(8), 2229-2238.

Mahalwal, V. S., & Ali, M. (2003). Volatile constituents of Cymbopogon nardus (Linn.) Rendle. Flavour and fragrance journal, 18(1), 73-76.

Mikonnen, M., Abate, S., & Manhile, B. (2015). Adaptation of citronella grass oil (Cymbopogon winterianus Jowitt)

technologies as an alternative method for cockroaches (Blatella germanica L.). Int. J. Innov. Agric. & Biol. Res, 3(1), 29-33.

Nakahara, K., Alzoreky, N. S., Yoshihashi, T., Nguyen, H. T., & Trakoontivakorn, G. (2013). Chemical composition and antifungal activity of essential oil from Cymbopogon nardus (citronella grass). Japan Agricultural Research Quarterly: JARQ, 37(4), 249-252.

Navickiene, H. M. D., Morandim, A. D. A., Alécio, A. C., Regasini, L. O., Bergamo, D. C. B., Telascrea, M., ... & Kato, M. J. (2006). Composition and antifungal

activity of essential oils from Piper aduncum, Piper arboreum, and Piper tuberculatum. Química Nova, 29, 467-470.

Niazi, A., Manzoor, S., Asari, S., Bejai, S., Meijer, J., & Bongcam-Rudloff, E. (2014). Genome analysis of Bacillus amyloliquefaciens subsp. plantarum

UCMB5113: a rhizobacterium that improves plant growth and stress management. PLoS One, 9(8), e104651.

Okulate, M. A. (2009). Antimicrobial activity of bioactive compounds produced by Bacillus species. A final report of microbial diversity course.

Ortiz‐Rodríguez, T., De La Fuente‐Salcido, N., Bideshi, D. K., Salcedo‐Hernández, R., & Barboza‐Corona, J. E. (2010). Generation of chitin‐derived oligosaccharides toxic to pathogenic bacteria using ChiA74, an endochitinase native to Bacillus thuringiensis. Letters in applied microbiology, 51(2), 184-190.

Picard, Y., Roumagnac, P., Legrand, D., Humeau, L., Robène- Soustrade, I., Chiroleu, F., ... & Pruvost, O. (2008). Polyphasic characterization of Xanthomonas axonopodis pv. allii associated with outbreaks of bacterial blight on three Allium species in the Mascarene archipelago. Phytopathology, 98(8), 919-925.

Rosliani, R., Palupi, E. R., & Hilman, Y. (2016). Pengaruh benzilaminopurin dan boron terhadap pembungaan, viabilitas serbuk sari, produksi, dan mutu benih

bawang merah di dataran rendah.

Sansinenea, E., & Ortiz, A. (2011). Secondary metabolites of soil Bacillus spp. Biotechnology letters, 33, 1523-1538.

Sansinenea, E. (2012). Bacillus thuringiensis biotechnology (Vol. 528). Netherlands: Springer.

Schlegel, H. G., & Zaborosch, C. (1993). General microbiology: Cambridge university press.

Schwartz, J. L., & Laprade, R. (2000). Membrane permeabilisation by Bacillus thuringiensis toxins: protein insertion and pore formation. Entomopathogenic Bacteria: from laboratory to field application, 199-217.

Sharma, C. B. S. R., Prasad, S. S. V., Pai, S. B., & Sharma, S. (1976). The exotoxin of Bacillus thuringiensis: A new C-mitotic agent. Experientia, 32(11), 1465-1466.

Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses, and specific functions. Molecular microbiology, 56(4), 845-857.

Wibawa, I. P. A. H., Saraswaty, V., Kuswantoro, F., Andila, P. S., Wardhani, P. K., Tirta, I. G., & Sujarwo, W. (2019). A study of essential oil from an invasive Piper aduncum L. Jurnal Biologi Udayana, 23(2), 50-58.

Wirth, M. C., Walton, W. E., & Federici, B. A. (2010). Inheritance patterns, dominance, stability, and allelism of insecticide resistance and cross-resistance in two colonies of Culex quinquefasciatus (Diptera: Culicidae) selected with Cry toxins from Bacillus thuringiensis subsp. israelensis. Journal of medical entomology, 47(5), 814-822.

Wraight, C. L., Zangerl, A. R., Carroll, M. J., & Berenbaum, M. R. (2000). Absence of toxicity of Bacillus thuringiensis pollen to black swallowtails under field conditions. Proceedings of the National Academy of Sciences, 97(14), 7700-7703.

Wulff, E. G., Mguni, C. M., Mansfeld‐Giese, K., Fels, J.,Lübeck, M., & Hockenhull, J. (2002). Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis, and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant pathology, 51(5), 574-584.

Xu, X., Yu, L., & Wu, Y. (2005). Disruption of a cadherin gene associated with resistance to Cry1Ac δ-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Applied and environmental microbiology, 71(2), 948-954.

Yanti, Y., Habazar, T., Reflinaldon, R., Nasution, C. R., & Felia, S. (2017). Indigenous Bacillus spp. ability to growth promoting activities and control bacterial wilt disease (Ralstonia solanacearum). Biodiversitas Journal of Biological Diversity, 18(4), 1562-1567.

Zwahlen, C., Hilbeck, A., Gugerli, P., & Nentwig, W. (2003).

Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Molecular Ecology, 12(3), 765-775

Refbacks

  • There are currently no refbacks.