Biobased Materials for Agricultural Applications

Katherine Gatzos, Alejandro G. Marangoni, Erica Pensini

Abstract

Zein-based biomaterials were used as alternatives to plastic to produce spray-on mulching films and horticulture pots. Spray-on zein-based mulching films were prepared using basic zein solutions in water solidified with either potassium salts or acetic acid. In the lab, zein mulching films decreased moisture loss by approximately 10% over a 16 days period, reduced phosphorus runoff by 70%, and prevented soil erosion upon exposure to simulated rainfall events. Healthy growth of cherry radishes and pickling cucumbers was observed with zein mulch solidified with potassium phosphate and glacial acetic acid, indicating that zein mulch is a promising alternative to plastic mulching films. Moreover, zein was used to produce horticulture pots in combination with either linseed or tung oil. Zein pots did not degrade upon exposure to either -18℃ for seven days or outdoor sun for seven days or when they were submerged in aqueous solutions at pH 4, 6, and 9. Food grade dyes were incorporated into the potting material to enhance visual appeal without affecting the integrity of the zein material. Heirloom radish seeds germinated in zein pots were taller compared to those grown in commercial peat pots, indicating that zein pots can be successfully used

References

Accinelli, C., Saccà, M. L., Mencarelli, M., & Vicari, A. (2012). Deterioration of bioplastic carrier bags in the environment and assessment of a new recycling alternative. Chemosphere, 89(2), 136-143.

Bilck, A. P., Grossmann, M. V., & Yamashita, F. (2010). Biodegradable mulch films for strawberry production. Polymer Testing, 29(4), 471-476.

Biscarat, J., Charmette, C., Sanchez, J., & Pochat‐Bohatier, C. (2015). Development of a new family of food packaging bioplastics from cross‐linked gelatin-based films. The Canadian Journal of Chemical Engineering, 93(2), 176-182.

Briassoulis, D. (2004). An overview of the mechanical behaviour of biodegradable agricultural films. Journal of Polymers and the Environment, 12(2), 65-81.

Cirujeda, A., Aibar, J., Anzalone, Á., Martín-Closas, L., Meco, R., Moreno, M. M., . . . Suso, M. L. (2012). Biodegradable mulch instead of polyethylene for weed control of processing tomato production. Agronomy for Sustainable Development, 32(4), 889-897.

Costa, R., Saraiva, A., Carvalho, L., & Duarte, E. (2014). The use of biodegradable mulch films on the strawberry crop in Portugal. Scientia Horticulturae, 173, 65-70.

Eriksen, M., Laurent CM , Lebreton, Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., . . . Reisser, J. (2014). Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PloS one, 9(12).

Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability, 1(1), 51-58.

Gillgren, T., & Stading, M. (2008). Mechanical and Barrier Properties of Avenin, Kafirin, and Zein Films. Food Biophysics, 3(3), 287-294. doi:10.1007/s11483-008-9074-7

Halley, P., Rutgers, R., Coombs, S., Kettels, J., Gralton, J., Christie, G., . . . Lonergan, G. (2001). Developing biodegradable mulch films from starch‐based polymers. Starch‐Stärke, 53(8), 362-367.

Han, J., Shin, S.-H., Park, K.-M., & Kim, K. M. (2015). Characterization of physical, mechanical, and antioxidant properties of soy protein-based bioplastic films containing carboxymethylcellulose and catechin. Food Science and Biotechnology, 24(3), 939-945.

Hart, M. R., Quin, B. F., & Nguyen, M. L. (2004). Phosphorus runoff from agricultural land and direct fertilizer effects: A review. Journal of environmental quality, 33(6), 1954-1972.

He, D., Luo, Y., Lu, S., Liu, M., Song, Y., & Lei, L. (2018). Microplastics in soils: analytical methods, pollution characteristics, and ecological risks. TrAC Trends in Analytical Chemistry, 109, 163-172.

Herald, T. J., Hachmeister, K. A., Huang, S., & Bowers, J. R. (1996). Corn zein packaging materials for cooked turkey. Journal of Food Science, 61(2), 415-418.

Horodytska, O., Javier Valdés, F., & Fullana, A. (2018). Plastic flexible films waste management–a state of the art review. Waste Management, 77, 413-425.

Huang, Z., Hejazi, M., Tang, Q., Vernon, C. R., Liu, Y., Chen, M., & Calvin, K. (2019). Global agricultural green and blue water consumption under future climate and land-use changes. Journal of Hydrology, 574, 242-256.

Immirzi, B., Santagata, G., Vox, G., & Schettini, E. (2009). Preparation, characterisation, and field-testing of a biodegradable sodium alginate-based spray mulch. Biosystems Engineering, 102(4), 461-472.

Ingman, M., Santelmann, M. V., & Tilt, B. (2015). Agricultural water conservation in China: plastic mulch and traditional irrigation. Ecosystem Health and Sustainability, 1(4), 1-11.

Kaewphan, N., & Gheewala, S. H. (2013). Greenhouse gas evaluation and market opportunity of bioplastic bags from Cassava in Thailand. Journal of Sustainable Energy & Environment, 4, 15-19.

Kasirajan, S., & Ngouajio, M. (2012). Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development, 32, 501–529.

Keshavarz, T., & Roy, I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Current opinion in microbiology, 13(3), 321-326.

Kim, S. (2008). Processing and properties of gluten/zein composite. Bioresource Technology, 99(6), 2032-2036.

Lai, H. M., & Padua, G. W. (1997). Properties and microstructure of plasticized zein films. Cereal Chemistry, 74(6), 771-775.

Lamont, K., Pensini, E., Daguppati, P., Rudra, R., van de Vegte, J., & Levangie, J. (2018). Natural reusable calcium-rich adsorbent for the removal of phosphorus from water: proof of concept of a circular economy. Canadian Journal of Civil Engineering, 46(5), 458-461.

Li, C., Moore-Kucera, J., Miles, C., Leonas, K., Lee, J., Corbin, A., & Inglis, D. (2014). Degradation of potentially biodegradable plastic mulch films at three diverse US locations. Agroecology and sustainable food systems, 38(8), 861-889.

Malicevic, S., Garcia Pacheco, A. P., Lamont, K., Estepa, K. M., Daguppati, P., van de Vegte, J., . . . Pensini, E. (2020). Phosphate Removal from Water Using Alginate/Carboxymethylcellulose/Aluminum Beads and Plaster of Paris. Water environment research. doi:https://doi-org.subzero.lib.uoguelph.ca/10.1002/wer.1321

Marshall, T., Gravelle, A., Marangoni, A. G., Elsayed, A., & Pensini, E. (2020). Zein for Hydrocarbon Remediation: Emulsifier, Trapping Agent, or Both? Colloids and Surfaces A, 589, 124456.

Meng, Q., Fu, B., Tang, X., & Ren, H. (2008). Effects of land use on phosphorus loss in the hilly area of the Loess Plateau, China. Environmental monitoring and assessment, 139(1-3), 195-204.

Morra, L., Bilotto, M., Cerrato, D., Coppola, R., Leone, V., Mignoli, E., . . . Cozzolino, E. (2016). The Mater-Bi® biodegradable film for strawberry (Fragaria x ananassa Duch.) mulching: effects on fruit yield and quality. Italian Journal of Agronomy, 11(3), 203.

Muise, I., Adams, M., Côté, R., & Price, G. W. (2016). Attitudes to the recovery and recycling of agricultural plastics waste: A case study of Nova Scotia, Canada. Resources, Conservation and Recycling, 109, 137-145.

Nizzetto, L., Futter, M., & Langaas, S. (2016). Are agricultural soils dumps for microplastics of urban origin? Environ. Sci. Technol., 50(20), 10777-10779.

Scarascia-Mugnozza, G., Sica, C., & Russo, G. (2011). Plastic materials in European agriculture: actual use and perspectives. Journal of Agricultural Engineering, 42(3), 15-28.

Schettini, E., Santagata, G., Malinconico, M., Immirzi, B., Mugnozza, G. S., & Vox, G. (2013). Recycled wastes of tomato and hemp fibers for biodegradable pots: Physico-chemical characterization and field performance. Resources, Conservation and Recycling, 70, 9-19.

Shogren, R. L., 1999. . 73(11), pp. Preparation and characterization of a biodegradable mulch: paper coated with polymerized vegetable oils. Journal of Applied Polymer Science, 73(11), 2159-2167.

Smith, B. M., Bean, S. R., Selling, G., Sessa, D., & Aramouni, F. M. (2014). Role of non-covalent interactions in the production of visco-elastic material from zein. Food Chemistry, 147, 230-238.

Svirčev, Z., Obradović, V., Codd, G. A., Marjanović, P., Spoof, L., Drobac, D., . . . Važić, T. (2016). Massive fish mortality and Cylindrospermopsis raciborskii bloom in Aleksandrovac Lake. Ecotoxicology, 25(7), 1353-1363.

Wu, Q., Sakabe, H., & Isobe, S. (2003). Studies on the toughness and water resistance of zein-based polymers by modification. Polymer, 44(14), 3901-3908.

Wu, Q., Yoshino, T., Sakabe, H., Zhang, H., & Isobe, S. (2003). Chemical modification of zein by bifunctional polycaprolactone (PCL). Polymer, 44(14), 3909-3919.

Xu, H., Zhang, Y., Jiang, Q., Reddy, N., & Yang, Y. (2013). Biodegradable hollow zein nanoparticles for removal of reactive dyes from wastewater. Journal of environmental management, 125, 33-40.

Yeh, C.-H., Lücke, F.-K., & Janssen, J. (2015). Bioplastics: Acceptable for the Packaging of Organic Food? A Policy Analysis. Journal of Agriculture, Food Systems, and Community Development, 6(1), 95-105.

Zhang, D., Liu, H. B., Hu, W. L., Qin, X. H., Yan, C. R., & Wang, H. Y. (2016). The status and distribution characteristics of residual mulching film in Xinjiang, China. Journal of Integrative Agriculture, 15(11), 2639-2646.

Refbacks

  • There are currently no refbacks.